
Page 1 of 10

Java XML Overview

Java XML is simply working with an XML document from a Java program. Imagine, we
have a file "products.xml" where we have product details such as name, brand and price.

Now, we want to update prices for some products using Java programming. Before
writing such java programs to access XML documents, we should know basics of XML.

What is XML?

XML stands for EXtensible Markup Language. It is a text-based markup language which
is used to store and transport data. It is self-descriptive and both human-readable and,
machine-readable. Following are some notable points on XML −

XML Document

An XML document is the collection of elements that define data in a well structured and
organized manner. An XML document has two sections, namely, document prolog and
document elements.

Syntax

Following is the syntax of an XML document −

<?xml ?>

<root_element>

<element></element>

...

</root_element>

Where,

XML is a markup language.

XML is a tag based language like HTML.

XML tags are not predefined like HTML.

You can define your own tags which is why it is called extensible language.

XML tags are designed to be self-descriptive.

XML is W3C Recommendation for data storage and data transfer.

https://www.tutorialspoint.com/java_xml/java_xml_overview.htm 1/10

Page 2 of 10

Example

Following example shows Employee details with <Employee> as the root element and
<name>, <role>, <salary> as sub elements. Data for each element is enclosed
between opening and closing tags.

<?xml version="1.0" ?>

<Employee>

<name>Kiran</name>

<role>developer</role>

<salary>25,000</salary>

</Employee>

Learn Java in-depth with real-world projects through our Java certification course.
Enroll and become a certified expert to boost your career.

Elements in XML

An element is the building block of an XML document. It consists of an opening tag,
content and a closing tag. In an xml document, there should always be a root element,
inside which we can write many sub elements. Elements can also have any number of
attributes inside them.

Syntax

Following is the syntax of an XML element −

<root>

<child>

<subchild>.....</subchild>

</child>

</root>

Where,

<?xml ?> is the XML declaration statement. If included, it must be kept in the
first line.

<root_element> is the root element and it is the parent of all other elements.

<element> is the sub element of the root element.

<root> is the root element of the XML document.

https://www.tutorialspoint.com/java_xml/java_xml_overview.htm 2/10

https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=spring_boot_tutorial_3p&utm_campaign=internal
https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=spring_boot_tutorial_3p&utm_campaign=internal
https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=spring_boot_tutorial_3p&utm_campaign=internal
https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=spring_boot_tutorial_3p&utm_campaign=internal
https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=spring_boot_tutorial_3p&utm_campaign=internal
https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=spring_boot_tutorial_3p&utm_campaign=internal
https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=spring_boot_tutorial_3p&utm_campaign=internal
https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=spring_boot_tutorial_3p&utm_campaign=internal

Page 3 of 10

Example

Let us see an example where DOB(date of birth) is further structured into date, month
and year. Here, <DOB> is the root element and <date>, <month>, <year> are child
elements.

<DOB>

<date>27</date>

<month>March</month>

<year>2000</year>

</DOB>

Tags in XML

Tags in XML are self-explanatory and user defined. These are enclosed in less than (<)
and greater than (>) symbols. XML is case sensitive and hence opening and closing tags
should have same name.

Example

In the following example, we have written an address element with opening and closing
tags.

<address>Hyderabad</address>

Now, let us see some incorrect ways of writing XML tags:

<Address></address>

<ADDRESS></address>

Attributes in XML

<child> is the child element and its parent is the root element.

<subchild> is the sub child and its parent is the child element.

Since, XML is case sensitive unlike HTML, it throws the error: Opening and
ending tag mismatch.

https://www.tutorialspoint.com/java_xml/java_xml_overview.htm 3/10

Page 4 of 10

Elements in XML can have attributes. Attributes are name-value pairs that provide
further specific information about a particular element. An element can have any number
of attributes.

Syntax

Following is the syntax for XML attributes −

<element_name attribute_name="value" >content</element_name>

Where,

Example

Now, let's look at the following example where we have four attributes, name, class,
marks and DOB for the 'Student' element.

<Student name="Kiran" class="8" marks="50" DOB="27-03-2000"></Student>

Using sub elements to replace attributes

Instead of attributes, sub elements can also be used in elements to achieve the same
purpose as of attributes. The same student example can also be written as follows:

<Student>

<name>Kiran</name>

<class>8</class>

<marks>50</marks>

<DOB>27-03-2000</DOB>

</Student>

element_name is the name of the element.

attribute_name is the name of the attribute.

value is the value of the corresponding attribute.

It is always a best practice to use sub elements instead of attributes.
Because, sub elements can further be extended whereas attributes cannot be

https://www.tutorialspoint.com/java_xml/java_xml_overview.htm 4/10

Page 5 of 10

In the above example, If we further want the date of birth as date, month and year then
it can be done by using sub elements for DOB element as follows :

<Student>

<name>Kiran</name>

<class>8</class>

<marks>50</marks>

<DOB>

<date>27</date>

<month>03</month>

<year>2000</year>

</DOB>

</Student>

XML Declaration

XML declaration describes the basic format information such as version, encoding and
standalone status about the entire XML document. If an XML declaration is included in
the document, it must be written in the first line.

Syntax

Following is the syntax of XML declaration −

<?xml

version="version_number"

encoding="encoding_type"

standalone="standalone_status"

?>

Where,

extended.

By default, if declaration is not mentioned, XML parser considers the
document is in version 1.0

XML declaration starts with the character sequence <?xml and ends with the
character sequence ?>

https://www.tutorialspoint.com/java_xml/java_xml_overview.htm 5/10

Page 6 of 10

Example

Following example uses XML 1.0 version with encoding type UTF-16 and it is standalone.

<?xml

version="1.0"

encoding="UTF-16"

standalone="yes"

?>

XML Comments

Comments in XML are used to explain the document's purpose and details. It is always a
best practice to include comments in the document because it makes the task simpler to
the one who is reading the document for the first time. XML follows the same syntax as
of HTML.

Syntax

Following is the syntax for both single line and multi line XML comments −

<!-- comment here -->

Example

Let us say we have collected the information of departments in a college in the year
2015. These records might be changed over the years. So, mentioning this in the
comments helps the one who is editing to know when these details have been collected.

<?xml version = "1.0" encoding = "UTF-8" ?>

<!-- Following information is collected in the year 2015 -->

<college>

<Department>

version is the version number of the XML used

encoding is the character encoding used for the content of XML document

standalone is a boolean attribute whose default value is set to 'no'. This tells
whether the XML document is standalone or uses information from external
source to parse the document such as DTD(Document Type Definition). The
default value is set to 'no'.

https://www.tutorialspoint.com/java_xml/java_xml_overview.htm 6/10

Page 7 of 10

<name>CSE</name>

<code>CS</code>

<faculty_strength>25</faculty_strength>

</Department>

<Department>

<name>ECE</name>

<code>EC</code>

<faculty_strength>20</faculty_strength>

</Department>

</college>

XML Namespaces

XML namespaces are used to resolve name conflicts in the XML document. When two or
more XML fragments are added, then there is a chance that these XML code fragments
might use some tags with same name. Then, this confuses the XML parser. To avoid
these kind of name conflicts, XML Namespaces are used.

Example

Assume we have created an XML element holding the information about a coffee table −

<table>

<shape>Oval</shape>

<material>Wood</material>

<seat_count>3</seat_count>

<cost>15000</cost>

</table>

Suppose we have created another element which holds information about a dining table
as −

<table>

<shape>Rectangle</shape>

<material>Marble</material>

<seat_count>6</seat_count>

<cost>25000</cost>

</table>

When the above two XML code fragments are added together (in a single file), there will
be a name conflict. Though the name of both the elements is same the information

https://www.tutorialspoint.com/java_xml/java_xml_overview.htm 7/10

Page 8 of 10

provided by them varies. There are two ways to resolve these name conflicts in XML.
They are −

Using Prefix

We can differentiate the elements by adding prefix to them. To resolve the above name
conflict, we can add the prefix 'c' to the element holding the info about the coffee table
and similarly we can add the prefix 'd' for the other element (dining table).

Example

Let us take the same table example and try to resolve the name conflict using prefixes.

<!-- Coffee Table -->

<c:table>

<shape>Oval</shape>

<material>Wood</material>

<seat_count>3</seat_count>

<cost>15000</cost>

</table>

<!-- Dining Table -->

<d:table>

 <d:shape>Rectangle</d:shape>

 <d:material>Marble</d:material>

 <d:seat_count>6</d:seat_count>

 <d:cost>25000</d:cost>

</d:table>

Drawbacks of Using Prefixes

While using prefixes there still might be a chance where two elements have same prefix
along with the name. In such cases the conflict prevails.

Suppose if we add another element providing info about a dressing table, to
differentiate, we need to use the prefix 'd'. This again brings a conflict between dining
table and dressing table. Hence, using prefix can solve the conflict to some extent but
not completely.

Using Prefix

Using namespace declaration

https://www.tutorialspoint.com/java_xml/java_xml_overview.htm 8/10

Page 9 of 10

Using "namespace" Declaration

XML namespace declaration is used to resolve name conflicts effectively. A new attribute
named 'xmlns' is used.

Syntax

Following is the syntax for XML namespace −

<element-name xmlns:prefix="URI">

Where,

Example

The following example uses XML namespace declaration for three table tags. Now, the
conflict between dining table and dressing table is resolved by differentiating them in
their namespace URI.

<!-- Coffee Table -->

<h:table xmlns:h="/coffee">

<c:table>

<shape>Oval</shape>

<material>Wood</material>

<seat_count>3</seat_count>

<cost>15000</cost>

</table>

<!-- Dining Table -->

<d:table xmlns:h="/dining">

 <d:shape>Rectangle</d:shape>

 <d:material>Marble</d:material>

 <d:seat_count>6</d:seat_count>

 <d:cost>25000</d:cost>

</d:table>

element-name: Element name on which the namespace is used.

xmlns: A compulsory keyword to declare namespace.

prefix: Namespace prefix

URI: Namespace identifier

https://www.tutorialspoint.com/java_xml/java_xml_overview.htm 9/10

Page 10 of 10

<!-- Dressing Table -->

<d:table xmlns:h="/dressing">

 <d:brand>Trevi Furniture</d:brand>

 <d:material>Engineered wood</d:material>

 <d:cost>15000</d:cost>

</d:table>

https://www.tutorialspoint.com/java_xml/java_xml_overview.htm 10/10

